

TCP/IP OVER HIGH DELAY AND ASYMMETRIC MEDIA

By

Roderick J. Ragland
Senior Principal Engineer
Broadcast Services Division

Factors Affecting TCP Throughput in Challenging Environments

Factor	Terrestrial Link	GEO Satellite	VSAT Solution
Bit Error Rate	< 10 ⁻⁹	10 ⁻⁵ to 10 ⁻¹²	Proper link design, BER = 10 ⁻⁹
Round Trip Delay	Milliseconds to seconds	Seconds	TCP Spoofing Large windows
Continuity of Connectivity	Continuous	Intermittent during rain- fades	Intermittence is mitigated with proper link design
Forward and Reverse Links	1:1 (Equivalent Rates)	2:1 to 100:1	Rate control Ack filtering strategy
Communication Goals	Fair access over time High aggregate throughput over time High reliability	High throughput during contact periods Maximum link utilization	< 400 Kbit/s throughput Modification to congestion response and slow start Data compression
Primary Sources of Data Loss	Congestion	Congestion Corruption Link outage	Effects of corruption and link outages are mitigated with proper link design

Network Response-Times

- 125 ms transcontinental access across the Internet from two-well connected(T1) sites, on a good day
- 300 ms transcontinental access across the Internet from a dialup modem to a well-connected server.
- 500 ms DirecPC Personal Edition transcontinental Internet access (dialup-in, satellite back-haul)
- 700 ms Personal Earth Station w/User Aloha
- 1650 ms Personal Earth Station w/Reservation Inroute Access
- DirecPC Enterprise Edition same as Personal Earth Station

PES Inroutes And Outroutes

- Personal Earth Station
 - Outroute: 128/512 kbits/s
 - Inroute: 64/128/256 Kbits/s
- DirecPC Personal Edition
 - Outroute: 24 Mbit/s
 - Inroute: telephone modem
- DirecPC Enterprise Edition
 - Outroute: 3 to 24 Mbit/s
 - Inroute: 64/128/256 Kbits/s
- HNS customers have networks with 4,000 sites, 8 outroutes, 47 inroutes

Window Size Limits Throughput

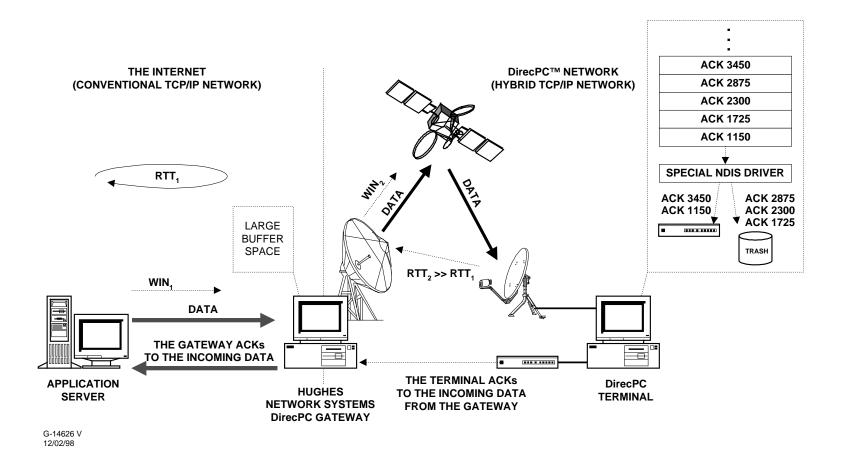
 Maximum throughput = Window Size / Round-Trip Delay

Examples:

PES w/Reservation max throughput with default window sizes = 8 Kbytes / 1.65 sec = 4.85 Kbyte/sec = 39 Kbits/sec

DirecPC Personal Edition = 48 Kbytes/ .5 sec = 768 Kbits/sec

Mitigating Techniques



- TCP Spoofing
- Web Caching
- ACK Filtering and Congestion Control
- Data Compression

Further information on mitigating factors under study/research: ftp://ftp.ietf.org/internet-drafts/drafts-ietf-tcpsat-res-issues-05.txt

DirecPC System Architecture

